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ABSTRACT 
 
The automatic identification of epilepsy seizures through 
the analysis of Electroencephalogram (EEG) data has been 
an active area of investigation within the biomedical 
science field. Numerous studies have proposed various 
methods for classifying EEG signals in recent years. While 
many of these approaches have demonstrated promising 
performance, they have often been associated with a high 
rate of false positives and have also posed computational 
intensity challenges. This study conducted a comparative 
assessment of the performance of the Extreme Gradient 
Boost Algorithm and the Support Vector Machine for the 
purpose of classifying epileptic seizures within human EEG 
data. The results of this investigation indicated that the 
XGBoost Algorithm exhibited superior classification 
capabilities when compared to the SVM model for EEG 
signal analysis. 
 

INTRODUCTION 
 
In recent times, significant attention has been directed 
towards leveraging computer analysis for the 
examination of bio-electric signals within the human 
body. Various health conditions in humans can be 
identified by analyzing these electrical signals, including 
critical signals governing functions such as heartbeats, 
brain activity, and those within the central nervous 
system. Notably, advancements in soft computing and 
artificial intelligence have substantially enhanced the 
development of more effective methods for classification, 
diagnostics, and improvements in treatment approaches 
(Chen et. al., 2020; Chakole, et al., 2019; Tzallas et al., 
2012). Soft computing techniques have played a pivotal 
role in the extraction and categorization of bio-signals 
like Electromyography (EMG), electroencephalogram 
(EEG), Electrooculography (EOG), and electrocardiogram 
(ECG) to aid in ailment detection and treatment. Diverse 
methodologies and techniques have emerged for 
distinguishing and categorizing electroencephalogram 
(EEG) signals as either normal or indicative of epilepsy. 
However, the visual analysis of EEG signals in its entirety 
presents considerable challenges, necessitating the 
development of automated detection methods. 

Epilepsy is characterized by sudden, recurring, and 
transient disruptions in perception or behavior, 
stemming from the excessive synchronization of cortical 
neuronal networks. Epileptic seizures are categorized 
based on their clinical manifestations into partial or focal, 
generalized, unilateral, and unclassified seizures 
(Bhattacharyya and Pachori 2017; Tzallas, Tsipouras, and 
Fotiadis, 2009). The adoption of classification systems in 
medical diagnosis has witnessed a substantial rise. It is 
undeniable that the evaluation of patient data and expert 
decisions constitute the most critical elements in the 
diagnostic process. Classification systems play a pivotal 
role in reducing potential errors that may arise due to 
fatigue or lack of experience on the part of physicians. 
Automated diagnostic systems have found application in 
diverse medical data domains, including 
electroencephalograms (EEGs), electromyograms (EMGs), 
ultrasound signals/images, X-rays, electrocardiograms 
(ECGs), and computed tomographic images (AlZubi, 
Islam, and Abbod, 2011). This study focuses on 
conducting a comparative analysis between the extreme 
gradient boost and support vector machine approaches 
for the detection and classification of EEG signals as 
either indicative of epilepsy seizures or non-epileptic 
seizures, aiming to facilitate more effective management 
of patients afflicted by epilepsy seizures. 

Consequently, the remainder of this paper is structured 
as follows: an examination of pertinent EEG signal 
research, a delineation of the methodologies employed in 
Xboost and SVM, followed by the presentation of results 
and ensuing discussion. The final section concludes the 
paper and provides recommendations for future research 
endeavors. 

2. REVIEWS ON ELECTROENCEPHALOGRAM  

In recent times, considerable effort has been directed 
towards harnessing computer-based analysis of the bio-
electric signals within the human body. While various 
methods for examining brain function, such as positron 
emission tomography (PET), functional magnetic 
resonance imaging (fMRI), and magnetoencephalography 
(MEG), have been introduced, the Electroencephalogram 
(EEG) signal remains a valuable tool for monitoring brain 
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activity, primarily due to its cost-effectiveness and 
patient-friendliness. However, the advent of 
breakthroughs in soft computing and artificial 
intelligence has significantly advanced the development 
of more effective techniques for classification, 
diagnostics, and treatment methodologies (Sharma et. al., 
2017; Tzallas et al., 2012). Diverse methodologies and 
techniques have emerged for the detection and 
categorization of electroencephalogram (EEG) signals as 
either normal or indicative of epilepsy. Nevertheless, the 
comprehensive visual analysis of EEG signals presents 
considerable challenges, necessitating the essential 
adoption of automated detection methods. 

Subasi et al. (2005) introduced an innovative approach to 
EEG signal analysis using discrete wavelet transform and 
subsequent classification with artificial neural networks 
(ANNs). Their method involved decomposing the signal 
into five levels using the Daubechies order 4 (DB4) 
wavelet filter, with input features derived from the 
energy of details and approximation. Adeli et al. (2007) 
proposed a methodology combining wavelet analysis, 
chaos theory, and neural networks for classifying 
electroencephalograms (EEGs) into healthy, ictal, and 
interictal EEGs. They employed wavelet analysis to 
decompose the EEG into delta, theta, alpha, beta, and 
gamma sub-bands, and used three parameters for EEG 
representation: standard deviation, correlation 
dimension, and largest Lyapunov exponent. Their 
research comprised two phases, aimed at optimizing 
computing time and output analysis through band-
specific and mixed-band analyses. The outcomes 
indicated the significance of all three key components in 
enhancing EEG classification accuracy within the wavelet-
chaos-neural network methodologies. 
 
Ganesan et al. (2010) proposed a technique for 
automatically detecting spikes in long-term 18-channel 
human electroencephalograms (EEGs) using a limited 
dataset. Their approach for detecting epileptic and non-
epileptic spikes in EEGs was founded on a multi-
resolution, multi-level analysis and Artificial Neural 
Network (ANN) approach. However, it is important to 
note that the results obtained from various research 
endeavors have consistently demonstrated a high false 
positive rate. 

 

3. METHODOLOGY  
 

The implementation of this study was conducted 
using the Python 3.6 software package, specifically within 
the Spyder 3.5.1 development environment. The 
operating system utilized was Windows 10 Enterprise, a 
64-bit version, running on a system equipped with a Core 
i5 CPU T4500@2.30GHZ Central Processing Unit, 8GB of 
RAM, and a 500 Gigabytes hard disk drive with sufficient 
speed to ensure optimal performance. 

To assess and validate the performance of each 
technique employed, statistical tools, specifically t-test 
values, were utilized. 

 
The selection of the Python programming 

language for implementing the system was motivated by 
its versatility, offering support for multiple programming 
paradigms and dynamic features, particularly well-suited 
for machine learning applications. 

 
The methodology employed in this study 

comprised five principal steps: 
 
a. Data Acquisition 
b. Removal of Artifacts 
c. Extraction of Features and Decomposition of 

Extracted Features 
d. Classification of Decomposed Features using 

XGboost and SVM: The final step involved the 
classification of the decomposed features using the 
Extreme Gradient Boost (XGboost) and Support Vector 
Machine (SVM) techniques, which were presumably 
chosen for their effectiveness in this context. 
 
A. Acquisition of datasets  
 
We utilized a publicly accessible dataset from the Clinique 
of Bonn University as the foundation for our research. 
This dataset was generated through the utilization of a 
128-channel 12-bit EEG system operating at a rate of 
173.5 samples per second. The complete dataset 
consisted of 500 segments, which were organized into 
five distinct sets. Each of these segments had a duration 
of 23.6 seconds. To ensure data quality, rigorous 
preprocessing was performed to eliminate artifacts 
originating from eye and muscle movements. 
 
The EEG data we obtained encompassed three distinct 
scenarios: data collected from individuals without any 
neurological conditions (healthy subjects), data from 
individuals with epilepsy during seizure-free intervals 
(interictal), and data from individuals with epilepsy 
during active seizure events (ictal). Each of these cases 
was further divided into five specific segments denoted as 
Z, O, N, S, and F, which were employed for training and 
testing the Extreme Gradient Boost (XGboost) and 
Support Vector Machine (SVM) models. 
 
Segments Z and O were derived from recordings of 
healthy individuals, with Z corresponding to data 
acquired when the subjects had their eyes open and O 
representing data when their eyes were closed. These 
recordings were captured using a standardized electrode 
placement scheme on the external surface of the scalp. 

 
Segments N and F were extracted from individuals 
experiencing interictal phases. Specifically, segment F 
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originated from epileptogenic regions of the brain, 
signifying focal activity, while segment N was sourced 
from the hippocampal region of the brain, indicating non-
focal interictal activity. 
 
Segment S was obtained from an individual with epilepsy 
during an active seizure event, providing data relevant to 
this critical phase of neurological activity. 
 
Within the EEG data, the clinically significant frequency 
bands of interest include delta, theta, alpha, beta, and 
gamma, each offering valuable insights for our analysis. 

B. Removal of Artifacts 
 
The EEG signal underwent normalization by adjusting the 
features in such a way that the signal exhibited the 
characteristics of a standard normal distribution with a 
mean (average) of μ=0 and a standard deviation of σ=1, 
where μ represents the mean and σ represents the 
standard deviation calculated from the mean. 
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C.   Feature Extraction Technique and Dimensional 
Reduction Using LDA 

 
After data normalization, the feature was 

extracted using LDA. 
 

Given the EEG signals, linear discriminant analysis 
feature extraction is obtained by performing the 
following steps: 
 

Step 1: Given a set of N samples        
   each of 

which is represented as a row of length M 
as in Figure 2.4 (step (A)), and  (   ) as 
given by, 

 

[
 
 
 
 
 
 (   )    (   )              (   )
 (   )    (   )              (   )

 
 
 

 (   )    (   )              (   )]
 
 
 
 
 

                                           (   ) 

 
Step 2:  Compute the mean of each   (      ) as in 
Equation 2.2 
 
Step 3:  Compute the mean of each   (      ) as in 
Equation 2.3 
 
Step 4:  Calculate between-class matrix 
  (     )  as in Equation 3.2 below 

   ∑   (    )(    )
 

 

   

                    (   ) 

 
Step 5:  for all Class                 

where    represents coefficients of 
signal s in an orthonormal basis. 

 
Step 6: Compute within-class matrix of each class 
   (     ), as follows: 

    ∑ (     )(     )
 
    

     

             (   ) 

 
Step 7: Construct a transformation matrix for each class 
(  )             

(  )
    

                                                       (   ) 

 
Step 8: The eigenvalues (  ) and eigenvector (  ) of 

each transformation matrix(  ), are then 
calculated, where   and    represent the 
calculated eigenvalues and eigenvectors of the 
ith class respectively. 

 
Step 9: Sorting eigenvectors in descending order 

according to their corresponding eigenvalues. 

The first k eigenvectors are then used as a 
lower dimensional space for each class (  

 ). 

 
Step 10: Project all original samples (  ) onto their 

lower dimensional space (  
 ), as: 

 
       

                                                                     (   )  

  Where    represents the projected 

samples of the class     

 
Step 11: end for 

The linear discriminant analysis of the EEG 
signals was implemented by using Python 3.7 (Spyder 
3.5.1). Using the above procedure, 4-dimension features 
are extracted from EEG signals. 

 
D. Classification of decomposed feature using 
XGboost and SVM. 
 
i.  Support Vector Machine for classification of extracted 
features  
 
Gradient boosting serves as the foundational model for 
XGBoost, where it progressively amalgamates weak base 
learning models into a more robust learner through 
iterative steps. During each iteration of the gradient 
boosting process, the residual error is employed to 
rectify the preceding predictor in such a way that the 
specified loss function can be optimized. 
 
Step 1:  input data (x, y)N

i = 1 
Step 2:  Select number of iterations M 
Step 3:  Choice of the loss-function Ψ(y, f) 
Step 4:  choice of the base-learner model h(x, θ) 

Step 5:  Initialize   ⏞ with a constant 
Step 6:  for              
Step 7:  compute the negative gradient   ( ) 
Step 7:  fit a new base-learner function  (    ) 
Step 9:  find the best gradient descent step-size     

          ∑       ̂    (  )   (     ) 

 

   

 

Step 10:  update the function estimate: 

 ̂ ← ̂       (     ) 
Step 11: end for 

In this research project, the machine learning 
models were trained using Python, harnessing various 
scientific computing libraries like NumPy and Pandas. 
These libraries offer efficient data structures and 
preprocessing techniques that are crucial for data 
analysis and model training. Additionally, the project 
relied on Scikit-learn version 0.18.1 and XGBoost, which 
were imported to facilitate the implementation and 
support of Linear Discriminant Analysis (LDA) and 
XGBoost learning models. 
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Figure 3.2: Flowchart showing trained and tested EEG signal with XGBoost, SVM and Decision Tree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
ii.  Support Vector Machine for classification of 
extracted features  
Support Vector Machine (SVM) is employed in this study 
to classify between normal and seizure activities based on 
continuous EEG signal recordings. Feature vectors are 
generated for both seizure and non-seizure activities. 
These feature vectors are constructed using Linear 
Discriminant Analysis (LDA), which decomposes the EEG 
signal into its amplitude and frequency modulated 
components. Parameters such as the area and mean 
frequency of these components are estimated and then 
provided as input for the LDA-SVM classification process. 
The Selected best global position (  ) of the LDA output 
with the detected feature subset mapped by    and 

modelled with the optimized parameters C and   using 
equation (3.20). 
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Where   is the size of the dataset,   is the cost 
function. I    are the slack variables, x and b is an offset 
scalar. 
iii. The Implementation Phase  
The implementation process for both the Gradient Boost 
algorithm and Support Vector Machine is illustrated in 
Figure 3.2. The initial stage involved acquiring signal data 
from human EEG, which underwent preprocessing using 
the Standard Scaler. The subsequent stage comprised 
feature selection and dimensional reduction accomplished 
through Linear Discriminant Analysis. The features 
extracted were then classified into two categories: 
epileptic seizures and non-epileptic seizures, employing 
the XGBoost and SVM algorithms. This entire process was 
carried out using version 3.2.4 of the Spyder software. 
 
4. RESULTS AND DISCUSSION  

The average training times were examined for both 
the XGBoost and Support Vector Machine (SVM) 
algorithms across five datasets (Z-O-N-F-S), each 
consisting of 20,490 data points. The results indicated that 
the average training time for XGBoost was 2.817 seconds, 
whereas for SVM, it was 0.610 seconds. This demonstrates 
that the time required for training increases with larger 
datasets, suggesting a dependence on the dataset's 
features for both the XGBoost and SVM models. 
For XGBoost, classification results revealed that as the 
dataset size increased, the computation time also 
increased. Specifically, for the five datasets (Z-O-N-F-S), 
XGBoost achieved a false positive rate of 0.33%, sensitivity 
of 99.68%, specificity of 99.45%, precision of 98.48%, 
accuracy of 99.06%, and an F-measure of 99.07% at a 
classification time of 0.01 seconds. For three datasets (O-
N-S) of dimension 12,294x100, XGBoost achieved a false 
positive rate of 1.86%, sensitivity of 92.52%, specificity of 
98.14%, precision of 96.53%, accuracy of 96.12%, and an 
F-measure of 94.49% at a classification time of 0.03 
seconds. Similarly, for the five datasets (Z-O-N-F-S), 

XGBoost had a false positive rate of 2.04%, sensitivity of 
86.92%, specificity of 97.96%, precision of 91.55%, 
accuracy of 95.72%, and an F-measure of 89.17% at a 
classification time of 0.11 seconds. 

The SVM algorithm exhibited a similar trend, with 
computation time increasing as the dataset size grew. For 
the five datasets (Z-O-N-F-S), SVM achieved a false positive 
rate of 1.47%, sensitivity of 99.03%, specificity of 98.53%, 
precision of 98.55%, accuracy of 98.78%, and an F-
measure of 98.79% at a classification time of 0.004 
seconds. For three datasets (O-N-S) of dimension 
12,294x100, SVM achieved a false positive rate of 3.24%, 
sensitivity of 94.24%, specificity of 96.76%, precision of 
93.47%, accuracy of 95.93%, and an F-measure of 93.86% 
at a classification time of 0.042 seconds. Similarly, for the 
five datasets (Z-O-N-F-S), SVM had a false positive rate of 
3.54%, sensitivity of 88.99%, specificity of 96.46%, 
precision of 85.66%, accuracy of 95.02%, and an F-
measure of 87.29% at a classification time of 0.016 
seconds. 
Overall, the results indicated that XGBoost outperformed 
SVM in terms of classification metrics, but it was 
computationally more expensive in terms of classification 
time. 
Statistical analyses were conducted to compare XGBoost 
and SVM. A paired t-test was performed on the False 
Positive Rate (FPR) and F-Measure between the two 
models. The analysis showed that XGBoost was 
statistically significant at a significance level of alpha (α) = 
0.05, with a negative mean difference indicating a reduced 
FPR compared to SVM. This confirms that XGBoost 
outperformed SVM in terms of FPR. 
Similarly, the paired t-test on the F-Measure showed that 
there was not a significant distinction in the test result, 
with a mean difference close to zero. However, it 
confirmed that XGBoost was statistically significant at a 
significance level of alpha (α) = 0.05, indicating superior 
performance over SVM in terms of F-Measure. 

 
Table 4.1a: Classification Scheme Results for XGBoosting Algorithm 

 

 
Table 4.1b: Classification Scheme Results for SVM Algorithm 

 

 

Dataset FPR 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

Accuracy 
(%) 

F-Score (%) Classification 
Time 

Z-S 0.33 99.68 99.45 98.48 99.06 99.07 0.01 

O-N-S 1.86 92.52 98.14 96.53 96.12 94.49 0.03 

Z-O-N-F-S 2.04 86.92 97.96 91.55 95.72 89.17 0.11 

Dataset FPR 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

Accuracy 
(%) 

F-Score (%) Classification 
Time 

Z-S 1.47 99.03 98.53 98.55 98.78 98.79 0.004 

O-N-S 3.24 94.24 96.76 93.47 95.93        93.86                                                                                                                                                                                                                                                       0.042 
Z-O-N-F-S 3.54 88.99 96.46 85.66 95.02 87.29 0.16 
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Fig 3.1: Graph of Average time for each techniques. 
 
CONCLUSION AND FUTURE WORKS  
 
The findings derived from this study's experiments 
demonstrate that the XGBoost model consistently 
delivered superior results in terms of recognition 
precision, accuracy, sensitivity, specificity, false positive 
rate (FPR), and F-measure when compared to the SVM. 
Consequently, an EEG signal classification system based 
on the XGBoost model emerges as a more dependable 
means of detecting seizures or identifying seizure-free 
states compared to the SVM model.  
 
Future research endeavors may involve exploring the 
performance of a hybrid approach that combines the 
XGBoost model with other classifiers. This approach 
would help ascertain their collective performance across 
various aspects such as classification accuracy, 
recognition, and average response time. 
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