

International Research Journal of Engineering and Technology (IRJET)Volume: 11 Issue: 04 | Apr 2024www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

# **Energy Monitoring System Using Smart Grid**

# Ankit Kumar

Electronics and Telecommunications K.J. Somaiya Institute of Technology, Sion, Mumbai, India.

# **Avanish Yadav**

Electronics and Telecommunications K.J. Somaiya Institute of Technology, Sion, Mumbai, India.

# **Divyank Trivedi**

Electronics and Telecommunications K.J. Somaiya Institute of Technology, Sion, Mumbai, India.

# Sunil Patil

# Electronics and Telecommunications K.J. Somaiya Institute of Technology, Sion, Mumbai, India.

\*\*\*

**Abstract**— In today's time, people are much more aware of the fluctuations in electricity that occur & the pricing or to be precise the bill they receive from the electric power companies. According to our usage we might get a rough idea of how much energy are we consuming but in order to be accurate we need to keep a check on the usage and consumption of the energy. Hence, we have designed this circuit that we call as the "smart grid" which allows us to monitor the live data feed of our energy consumption. In this paper, we design and implement IoT based energy monitoring system that can be used in many applications, such as electricity billing system, energy management in smart grid and home automation. The experimental results showed that the system can successfully record the voltage, current, active power and accumulative power consumption.

#### Keywords—Energy monitoring system, IoT, Smart grid

# **1. INTRODUCTION**

As we know, IoT is being widely accepted & implemented in electronic devices & other technologies that help to connect & exchange data with other devices. IoT encompasses electronics, communication & computer science engineering. The increasing population & the economic development over the time has led to the growth in the consumption of electric energy. [1] Here, in our circuit we have used components like: ZMPT101B which is a voltage sensor to detect the single-phase AC voltage, ESP32 which is our Wi-Fi module, LCD display to display our data on the circuit, I2C module which is a serial interface for 16x2 character LCD that converts I2C serial data to parallel data, SCT-013 which is a non-invasive AC current sensor clamp & also few small components like resistors & capacitors.

Our entire circuit has been printed on a PCB board in order to minimize the errors from open wires & interferences. Test readings of a few light bulbs of different ratings such as 200W, 15W & 5W. The live data can we viewed on a spreadsheet. This spreadsheet displays live data & allows us to even store it as per our requirement for any future needs.

#### 2. METHOD

#### Electromagnetic Induction

It is the principle of production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. In simple terms, the current produced because of voltage production due to changing magnetic field. So as the current flows through the wire magnetic field is produced around it. This magnetic field can be checked or studied to monitor the fluctuations., if any.

Its application can be seen in current transformer theory. The current transformer theory is based on the principle of electromagnetic induction. The current transformer in an electrical device that measures electric current in a primary conductor & transforms the high current into a manageable value in order to be safely measured.

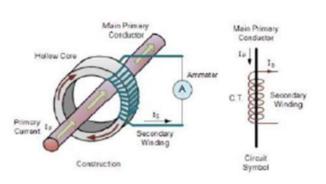



Fig.1: Current Transformer

# **3. LITERATURE SURVEY**

Smart meters are increasingly being installed in homes around the world, largely due to government initiatives aimed at saving energy. This creates a large physical communication network consisting of millions of meters. These meters benefit energy distributors by simplifying transactions such as reading and billing. However, digital communication networks such as smart meters have the flexibility to offer new services. Smart meters can provide value-added services such as displaying energy consumption or managing loads to stay within contractual performance limits. They can also offer general functions such as optimizing heating or lighting based on energy tariffs that can be integrated into home automation systems.

In addition, other gas, heat and water smart meters could be connected to this network, increasing its efficiency. This requires smart meters that can effectively communicate with both energy service providers and household systems [1]. Effective network management could be an alternative to a complete network overhaul. However, the integration of smart grid technology offers valuable benefits and operational improvements. However, implementing smart metering systems presents a number of challenges and issues, including significant costs in the billions of dollars [2]. The power adapter and the meter monitor the temperatures in the freezer and the refrigerator and send the data wirelessly using the ZigBee protocol to the monitoring and control device. This data can then be sent to a computer for analysis. Energy-Butler obtains the price information for the next day through the home network from the Internet. Adjusts energy consumption based on the set temperatures of the refrigerator and freezer. This helps shift energy consumption from high-price periods to low-price periods, improving economic efficiency and ensuring stable energy supplies [4].

Improving monitoring capabilities to monitor all critical components in key locations requires the collection of large amounts of data to accurately and quickly visualize the situation. It is very important to create and send alerts when predefined conditions are met and store these alerts in a database for later analysis. This enhances the SCADA system by displaying network status on geographic maps, helping operators respond more quickly. Implementing robust data processing capabilities and gathering data from multiple locations more frequently enables better decision-making to improve efficiency and reliability. Analyzing this data and visually presenting the results helps to identify potential problems, take preventive measures and create accurate forecasts and investment plans.

This ultimately increases reliability while reducing operating costs [5]. Electricity consumption (KWH) in India was 689.537.000.000 in 2011 and earlier it was 156.400.000.000 in 1990. The main reason is the increase in electronic and electrical appliances in the home network (HAN). When we compare the energy consumption between 1990 and 2011, we can hardly find a home without a television, washing machine, refrigerator, etc. Among household appliances, the largest electricity consumption is lighting equipment, which consumes about 30 percent of electricity, followed by refrigerators, fans and electric water heaters, etc. [6] Intelligent infrastructure includes the intelligent energy subsystem, the intelligent information subsystem, and the intelligent communication subsystem. The smart energy mechanism of production, subsystem controls the distribution and consumption of electrical energy. The intelligent information subsystem is responsible for managing the exchange of information related to the measurement, monitoring and operation control of the smart grid system. Meanwhile, the intelligent communication subsystem solves the problems of the communication infrastructure for exchanging data between smart grid systems, devices and applications connected to the smart grid. The intelligent management system is implemented by using smart infrastructure devices to achieve goals related to improving energy efficiency, balancing supply and demand, regulating emissions, reducing operating costs, and maximizing utility value. An intelligent protection system is a subsystem in the intelligent grid that provides advanced network reliability analysis, failure protection, and security and privacy services [7].

The power grid is like a complex adaptive system (CAS) with many parts distributed geographically. It can change quickly as a whole as a result of actions in specific areas. EPRI used CAS to develop modeling, simulation, and analysis tools for adaptive and reconfigurable grid control.

The idea of self-healing distributed power system control involves treating each component as an intelligent agent. These agents cooperate and sometimes compete to optimize the entire system. This approach includes modeling, computation, sensing and control. EPRI began by modeling a bulk energy market where artificial agents represent buyers and sellers. Using this and other projects, EPRI has developed a model with multiple adaptive agents representing the grid and its interconnected organizations. The parameters to be measured in this proposal include consumption rates of electrical equipment, energy production rates of various energy sources, interactive connection of energy sources to the grid, etc. In addition, the experiment will monitor real-time energy billing and analyze consumer energy consumption habits and also the energy demand forecast. To this end, it will monitor how the consumer monitors energy consumption and track back energy consumption rates [4][9].

The energy provider requests automatic readings of electricity meters monthly via SMS. The SMS gateway sends requests to all GSM electricity meters. Each electricity meter responds by reading its consumption in kWh via SMS. The SMS gateway collects and stores these readings. It may take some time to load all the readings due to network traffic and weather conditions. Once the measured values are collected, the application terminal updates the database. The e-billing system calculates bills based on tariff rates and sends notifications via email, SMS or hard copy. A web portal allows owners to check and pay bills online. Payment options include online banking or cash at energy provider outlets. Owners can also get meter readings via SMS and monitor usage from anywhere [10].

The implemented USEM is perfectly calibrated for its normal operating range. Measurement accuracy and all features of the USEM are tested under various loads with a wide range of voltage and current. All quantities are compared with a standard Fluke 5502A calibration meter. We measured voltages from 150 to 300 V with the USEM

and compared with the Fluke 5502A. It shows that the USEM gives a small error when the operating voltage is <180 and >240 V. We also compared the current measurements between the implemented USEM and a standard Fluke 5502A calibration meter. The result is shown in Fig. 7b. It shows that the current measurement gives a small error when the operating current is <0.2A and >15A [10].

Grid computing can be described as a world in which computing power is as readily available as electricity and other utilities. According to Irving et al. in "Plug into Grid Computing", Grid computing could offer participants an inexpensive and efficient means to compete (but also cooperate) in providing reliable, cheap and sustainable electricity supplies. Furthermore, potential applications for future energy systems include all aspects that involve computation and are interconnected, such as monitoring and control, market entry and participation, regulation and planning. Grid computing holds the promise of solving the design, management and protection of electric power infrastructure as CAS. That Mentioned in S. M. Amin and B. F. Wollenberg, "Toward a smart grid: power delivery [9]. Finally, in terms of end-user benefits, a number of issues need to be addressed to be effective. The requirement of a good efficient economic interface is again mandatory. This is especially true wherever meter placement is typical in locations that are remote from everyday living spaces, such as basements, cellars or dedicated utility rooms. However, once an effective interface is enabled, a number of services can be implemented that can run and be integrated within the functions and services that fall under the category of home automation and which have so far expanded significantly at the national level. basis. Home automation is

associated not only with functions such as security, entertainment and comfort, and care for the sick, elderly and disabled, but also with energy savings. Unfortunately, so far, the more common energy-saving home automation devices ignore the official smart meter mainly due to the lack or complexity of the local interface in favor of other independent and cheap devices to measure consumption, which in turn would be difficult. be integrated into programs for DR policies.

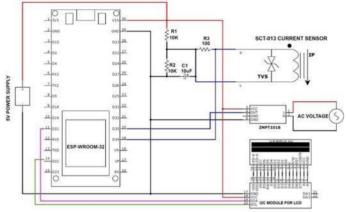



Fig.2: Circuit Diagram

# 4. METHODOLOGY

As seen in the circuit diagram, we have used SCT-013 (a noninvasive current sensor clamp) that is clamped around the input wire in order to detect the electric current flowing through it. The ZMPT101B is a voltage sensor that detects the AC voltage flowing through & is connected to ESP-32 that acts as Wi-Fi module.

All the components are connected together first through jumper wires onto a breadboard & in order to minimize the errors produced due to the open wires the circuit has been printed on PCB. Allowing us to create a compact system circuit & also minimize the errors or fluctuations produced earlier. The schematic diagram of the PCB can be seen below.

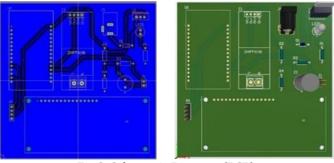



Fig.3: Schematic Diagram (PCB)



e-ISSN: 2395-0056 p-ISSN: 2395-0072

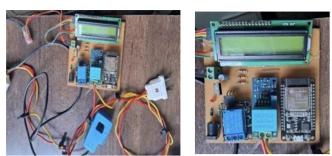



Fig.4: Printed Circuit Board Design

#### **5. EXPERIMENTAL RESULTS**

Through our system we have successfully managed to monitor the voltage, current & power consumption as seen in Fig.4. Here we can see that the values are shown for when the appliance is running & as and when we turn off the appliances all the 'values return to zero'. In this way we have managed to do the test run on light bulbs of different Watts. The circuit is capable of monitoring heavy appliances also such as juice mixer or grinder, hair dryer, etc. In this section, the operation of the developed IoT energy meter is demonstrated.

The implementation took place experimentally at our laboratory. Comprising gauges indicating the active values of voltage, current, and power, the dashboard also featured graphs representing the measured energy data over time. Energy data was collected from the energy sensor node and transmitted to the server. Each sensor possessed a unique ID and transmitted data every 20 seconds throughout the day. This design allows for the deployment of multiple sensor nodes, with data from each node simultaneously displayed on the dashboard.

Fig.5 (a, b, c) respectively show the results obtained while monitoring the appliances, since the data obtained is in large amounts, it is not possible to show entire data but an instance of each can be seen.

| 714 | April 23, 2024 at 07:49PM | powerMeter | 67.15V  | 117.28mA  | 9.09W   |
|-----|---------------------------|------------|---------|-----------|---------|
| 715 | April 23, 2024 at 07:50PM | powerMeter | 67.58V  | 127.54mA  | 9.26W   |
| 716 | April 23, 2024 at 07:50PM | powerMeter | 77.52V  | 119.57mA  | 9.81W   |
| 717 | April 23, 2024 at 07:50PM | powerMeter | 0.00V   | 0.00mA    | 0.00W   |
| 718 | April 23, 2024 at 07:50PM | powerMeter | 0.00V   | 0.00mA    | 0.00W   |
| 719 | April 23, 2024 at 07:50PM | powerMeter | 0.00V   | 0.00mA    | 0.00W   |
| 720 | April 23, 2024 at 07:50PM | powerMeter | 0.00V   | 0.00mA    | 0.00W   |
| 721 | April 23, 2024 at 07:50PM | powerMeter | 0.00V   | 0.00mA    | 0.00W   |
| 722 | April 23, 2024 at 07:50PM | powerMeter | 0.00V   | 0.00mA    | 0.00W   |
| 723 | April 23, 2024 at 07:51PM | powerMeter | 217.82V | 417.30mA  | 90.01W  |
| 724 | April 23, 2024 at 07:51PM | powerMeter | 306.78V | 407.39mA  | 125.98W |
| 725 | April 23, 2024 at 07:52PM | powerMeter | 212.69V | 528.76mA  | 112.71W |
| 726 | April 23, 2024 at 07:52PM | powerMeter | 210.57V | 423.74mA  | 89.31W  |
| 727 | April 23, 2024 at 07:52PM | powerMeter | 266.77V | 439.75mA  | 117.32W |
| 728 | April 23, 2024 at 07:52PM | powerMeter | 265.41V | 321.90mA  | 85.34W  |
| 729 | April 23, 2024 at 07:52PM | powerMeter | 262.55V | 300.93mA  | 78.95W  |
| 730 | April 23, 2024 at 07:53PM | powerMeter | 0.00V   | 0.00mA    | 0.00W   |
| 731 | April 23, 2024 at 07:53PM | powerMeter | 265.27V | 449.85mA  | 118.79W |
| 732 | April 23, 2024 at 07:54PM | powerMeter | 256.49V | 1041.40mA | 267.11W |
| 733 | April 23, 2024 at 07:54PM | powerMeter | 264.00V | 503.21mA  | 132.63W |
| 734 | April 23, 2024 at 07:54PM | powerMeter | 267.96V | 443.48mA  | 118.97W |
| 735 | April 23, 2024 at 07:54PM | powerMeter | 260.84V | 856.39mA  | 222.30W |
| 736 | April 23, 2024 at 07:54PM | powerMeter | 269.23V | 489.25mA  | 131.57W |
| 737 | April 23, 2024 at 07:55PM | powerMeter | 264.80V | 622.27mA  | 164.43W |
| 738 | April 23, 2024 at 07:55PM | powerMeter | 269.22V | 458.39mA  | 123.16W |
| 739 | April 23, 2024 at 07:55PM | powerMeter | 267.97V | 437.57mA  | 117.22W |

Fig.5a: Results for a hair dryer

| Shee |                                                        |            |             |              |          |
|------|--------------------------------------------------------|------------|-------------|--------------|----------|
|      | A                                                      | 8          | c           | D            | E        |
| 1    | DATE & TIME                                            | EventName  | Voltage (V) | Current (mA) | Power (W |
| 2    | March 20, 2024 at 11:30PM                              | powerMeter | 564.62V     | 59.68mA      | 34.19W   |
| 3    | March 20, 2024 at 11:30PM                              | powerMeter | 548.39V     | 54.57mA      | 30.06W   |
| 4    | March 20, 2024 at 11:30PM                              | powerMeter | 554.14V     | 54.62mA      | 30.28W   |
| 5    | March 20, 2024 at 11:30PM                              | powerMeter | 557.37V     | 55.21mA      | 30.96W   |
| 6    | March 20, 2024 at 11:30PM                              | powerMeter | 551.37V     | 57.23mA      | 31.74W   |
| 7    | March 20, 2024 at 11:31PM                              | powerMeter | 558.76V     | 60.85mA      | 34.18W   |
| 8    | March 20, 2024 at 11:31PM                              | powerMeter | 549.53V     | 57.51mA      | 31.72W   |
| 9    | March 20, 2024 at 11:31PM                              | powerMeter | 544.99V     | 52.27mA      | 28.49W   |
| 10   | March 20, 2024 at 11:31PM                              | powerMeter | 548.38V     | 53.75mA      | 29.48W   |
| 11   | March 20, 2024 at 11:31PM                              | powerMeter | 533.86V     | 59.88mA      | 31.99W   |
| 12   | March 20, 2024 at 11:31PM                              | powerMeter | 528.96V     | 54.41mA      | 28.75W   |
| 13   | March 20, 2024 at 11:31PM                              | powerMeter | 541.47V     | 60.74mA      | 33.09W   |
| 14   | March 20, 2024 at 11:31PM                              | powerMeter | 547.15V     | 54.36mA      | 29.75W   |
| 15   | March 20, 2024 at 11:32PM                              | powerMeter | 539.42V     | 52.94mA      | 28.58W   |
| 16   | March 20, 2024 at 11:32PM                              | powerMeter | 544.15V     | 53.80mA      | 29.27W   |
| 17   | March 20, 2024 at 11:32PM                              | powerMeter | 558.15V     | 57.89mA      | 32.54W   |
| 18   | March 20, 2024 at 11:32PM                              | powerMeter | 540.16V     | 51.80mA      | 28.01W   |
| 19   | March 20, 2024 at 11:32PM                              | powerMeter | 533.77V     | 50.35mA      | 26.91W   |
| 20   | March 20, 2024 at 11:32PM                              | powerMeter | 560.71V     | 60.90mA      | 34.35W   |
| 21   | March 20, 2024 at 11:32PM                              | powerMeter | 533.32V     | 55.20mA      | 29.63W   |
| 22   | March 20, 2024 at 11:33PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 23   | March 20, 2024 at 11:33PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 24   | March 20, 2024 at 11:33PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 25   | March 20, 2024 at 11:33PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 26   | March 20, 2024 at 11:33PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 27   | March 20, 2024 at 11:33PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 28   | March 20, 2024 at 11:33PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 29   | March 20, 2024 at 11:33PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 30   | March 20, 2024 at 11:33PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 31   | March 20, 2024 at 11:33PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 32   | March 20, 2024 at 11:33PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 33   | March 21, 2024 at 08:04PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 34   | March 21, 2024 at 08:04PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 35   | March 21, 2024 at 08:04PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 36   | March 21, 2024 at 08:04PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 37   | March 21, 2024 at 08:04PM                              | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 38   | March 21, 2024 at 08:04PM<br>March 21, 2024 at 08:04PM | powerMeter | 0.00V       | 0.00mA       | 0.00W    |
| 39   | March 21, 2024 at 08:04PM<br>March 21, 2024 at 08:04PM | powerMeter | 0.00V       | 0.00mA       | 0.00W    |

Fig.5b: Results for 3 different light bulbs connected in serial connection

| 1390 | April 24, 2024 at 04:23PM | powerMeter | 0.00V  | 0.00mA   | 0.00W  |
|------|---------------------------|------------|--------|----------|--------|
| 1391 | April 24, 2024 at 04:23PM | powerMeter | 0.00V  | 525.03mA | 0.00W  |
| 1392 | April 24, 2024 at 04:23PM | powerMeter | 40.29V | 623.37mA | 26.14W |
| 1393 | April 24, 2024 at 04:24PM | powerMeter | 27.46V | 486.71mA | 14.01W |
| 1394 | April 24, 2024 at 04:24PM | powerMeter | 18.79V | 565.91mA | 10.83W |
| 1395 | April 24, 2024 at 04:24PM | powerMeter | 17.76V | 538.69mA | 9.70W  |
| 1396 | April 24, 2024 at 04:24PM | powerMeter | 29.69V | 523.25mA | 16.09W |
| 1397 | April 24, 2024 at 04:25PM | powerMeter | 20.97V | 518.66mA | 11.52W |
| 1398 | April 24, 2024 at 04:25PM | powerMeter | 34.92V | 509.13mA | 16.95W |
| 1399 | April 24, 2024 at 04:25PM | powerMeter | 43.22V | 506.76mA | 22.51W |
| 1400 | April 24, 2024 at 04:25PM | powerMeter | 8.64V  | 558.80mA | 4.92W  |
| 1401 | April 24, 2024 at 04:25PM | powerMeter | 13.67V | 576.69mA | 7.84W  |
| 1402 | April 24, 2024 at 04:26PM | powerMeter | 38.08V | 459.46mA | 17.20W |
| 1403 | April 24, 2024 at 04:26PM | powerMeter | 9.01V  | 580.46mA | 5.38W  |
| 1404 | April 24, 2024 at 04:26PM | powerMeter | 9.90V  | 539.65mA | 6.55W  |
| 1405 | April 24, 2024 at 04:26PM | powerMeter | 30.90V | 514.02mA | 15.51W |
| 1406 | April 24, 2024 at 04:26PM | powerMeter | 27.52V | 537.50mA | 14.83W |
| 1407 | April 24, 2024 at 04:26PM | powerMeter | 17.51V | 533.64mA | 9.01W  |
| 1408 | April 24, 2024 at 04:27PM | powerMeter | 0.00V  | 562.49mA | 0.00W  |
| 1409 | April 24, 2024 at 04:27PM | powerMeter | 0.00V  | 519.15mA | 0.00W  |
| 1410 | April 24, 2024 at 04:27PM | powerMeter | 0.00V  | 561.97mA | 0.00W  |
| 1411 | April 24, 2024 at 04:27PM | powerMeter | 32.22V | 568.42mA | 21.75W |
| 1412 | April 24, 2024 at 04:27PM | powerMeter | 0.00V  | 0.00mA   | 0.00W  |
| 1413 | April 24, 2024 at 04:27PM | powerMeter | 0.00V  | 0.00mA   | 0.00W  |
| 1414 | April 24, 2024 at 04:27PM | powerMeter | 0.00V  | 0.00mA   | 0.00W  |

Fig.5c: Results for a mobile charger

# **6. CONCLUSION**

A low-cost energy monitoring system is designed for monitoring the energy & tracking applications. The results of the project bespeaks the system's ability to successfully monitor voltage, current, active power. In subsequent work, system can be further developed to gain more insight into the energy usage profile and learn to automatically detect the appliances in use.



# REFERENCES

- S. M. Amin and B. F. Wollenberg, "Toward a smart grid: power delivery for the 21st century," IEEE Power and Energy Magazine, vol. 3, no. 5, pp. 34-41, 2005.
- [2] F. Benzi, N. Anglani, E. Bassi, and L. Frosini, "Electricity Smart Meters Interfacing the Households," IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4487-4494, 2011.
- [3] A. Zaballos, A. Vallejo, M. Majoral, and J. M. Selga, "Survey and Performance Comparison of AMR Over PLC Standards," IEEE Transactions on Power Delivery, vol. 24, no. 2, pp. 604-613, 2009.
- [4] R. Rashed Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, "A survey on Advanced Metering Infrastructure," International Journal of Electrical Power & Energy Systems, vol. 63, pp. 473-484, 2014
- [5] A. M. Vega, F. Santamaria, and E. Rivas, "Modeling for home electric energy management: A review," Renewable and Sustainable Energy Reviews, vol. 52, pp. 948-959, 2015.
- [6] E. Taktak and I. B. Rodriguez, "Energy Consumption Adaptation Approach for Smart Buildings," in 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), 2017, pp.1370-1377.
- [7] M. Beaudin and H. Zareipour, "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, vol. 45, pp. 318-335, 2015.
- [8] K. Athira, A. R. Devidas, M. V. Ramesh, and V. P. Rangan, "User centered energy management scheme for smart buildings," in 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017, pp. 1296-1302.
- [9] H. G. R. Tan, C. H. Lee, and V. H. Mok, "Automatic power meter reading system using GSM network," in 2007 International Power Engineering Conference (IPEC 2007), 2007, pp. 465-469.
- [10] M. Wasi-ur-Rahman, M. T. Rahman, T. H. Khan, and S.
  M. L. Kabir, "Design of an intelligent SMS based remote metering system," in 2009 International Conference on Information and Automation, 2009